# GETTING STARTED WITH THE EMP FRAMEWORK – PART 1

ANDY ROSE, IMPERIAL COLLEGE LONDON







### THE BASIC IDEA

- The emp-fwk repo contains top-level designs for various different FPGAs and boards
- 2. Each of these designs instantiates an entity named emp\_payload and connects its input/output ports to the clocking infrastructure, control bus, and input/output buffers.
- 3. Parameters that might have to be changed between different algorithms or different FPGAs are specified as constants in a VHDL package <a href="mailto:emp\_project\_decl">emp\_project\_decl</a>.

## 1 - PREREQUISITES

# Set up python
sudo yum install python3-pip python3-devel
pip3 install --user pipenv

```
# Install the IPBB tool
```

curl -L https://github.com/ipbus/ipbb/archive/v0.5.2.tar.gz | tar xvz source ipbb-0.5.2/env.sh

#### Already installed: Included here for completeness

## 1 - PREREQUISITES

ipbb init my-firmware
cd my-firmware

Already installed: Included here for completeness

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/empfwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy\_ttc.git -b v2.1

## 1 - PREREQUISITES: THREE THINGS TO NOTE

ipbb init my-firmware
cd my-firmware

EMP Framework currently stored on CERN Gitlab for our convenience: How to manage wider distribution not currently thought through!

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/empfwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy\_ttc.git -b v2.1

## 1 - PREREQUISITES: THREE THINGS TO NOTE

ipbb init my-firmware
cd my-firmware

Using CMS legacy trigger and timing tools: would need changing for a different experiment

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/empfwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy\_ttc.git -b v2.1

## 1 - PREREQUISITES: THREE THINGS TO NOTE

ipbb init my-firmware
cd my-firmware

IPbus is on Github: completely public and independent of EMP

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/empfwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy\_ttc.git -b v2.1

## 1 - PREREQUISITES

- You now have the build tools and all the infrastructure firmware you need for building a firmware for a typical HEP Trigger/DAQ application
  - SIMPLES!
- Only thing missing is a payload

## 2 - PAYLOAD: ADD FROM AN EXISTING REPOSITORY

ipbb add svn [repo\_url]

ipbb add git [repo\_url]

But we are not going to do this: What would be the fun in that...

• Firmware project sources have no natural "structure"

• Traditionally, files & folders end up being a real mess

• IPBB imposes a fixed directory structure to keep everything organized

mkdir -p src/my-algo-repo/an-algo/firmware/{cfg,hdl}

- You are now ready to create a payload
- Could start from blank file
  - but that would be tedious
- EMP framework includes a "Null" algorithm which can be copied
  - Don't we spoil you :-)

cp src/emp-fwk/components/payload/firmware/hdl/emp\_payload.vhd src/my-algo-repo/an-algo/firmware/hdl/

- IPBB uses Dependency ("dep") files as a distributed way of organizing sources
- If you want to use your new payload, you need to add it to a dep file
- Open src/my-algo-repo/an-algo/firmware/cfg/top.dep
- Add the line src emp\_payload.vhd
- The IPBB "src" command defaults to the local "hdl" folder

- The "-c" option changes the search path
- Most of the time we want to constrain the payload to the payload area
  - So add a design constraints file
  - This is a "standard" element, so we have one in the Repo
  - Add the line



- IPbus uses XML files to handle address space
- Add an address table so we can use IPbus later
- Add the line addrtab -c emp-fwk:components/payload emp\_payload.xml

#### • Finally, we need to target a specific board

- We have already made a large number of board configurations
- We are using the KCU105 dev board
- Add the line include -c emp-fwk:boards/kcu105

| Board                  | Dependency file command                                         |
|------------------------|-----------------------------------------------------------------|
| HTG K800               | include -c emp-fwk:boards/k800                                  |
| MPUltra                | include -c emp-fwk:boards/mpultra                               |
| VCU118                 | include -c emp-fwk:boards/vcu118                                |
| Serenity KU115 SO1     | include -c emp-fwk:boards/serenity/dc_ku115 dc_ku115_so1.dep    |
| Serenity KU115 TM1/BM1 | include -c emp-fwk:boards/serenity/dc_ku115 dc_ku115_am1.dep    |
| Serenity KU15P v1      | include -c emp-fwk:boards/serenity/dc_ku15p dc_ku15p_sm1_v1.dep |
| Serenity KU15P v2      | include -c emp-fwk:boards/serenity/dc_ku15p dc_ku15p_sm1_v2.dep |

 emp\_project\_decl is a VHDL package that defines several configurable settings of the EMP framework, such as clock frequencies for receiving data from the I/O channels, and which firmware components are instantiated in each datapath region (e.g. input buffers, output buffers, input transceiver control logic, output transceiver control logic)

| Name               | Туре                          | Meaning                                                                                                           |
|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|
| PAYLOAD_REV        | std_logic_vector(31 downto 0) | 32-bit version number for the algorithm                                                                           |
| LHC_BUNCH_COUNT    | integer                       | Number of bunch crossings in an LHC orbit                                                                         |
| LB_ADDR_WIDTH      | integer                       | Address width for data words in I/O buffers                                                                       |
| CLOCK_RATIO        | integer                       | Ratio of frequency of I/O channel data clock to LHC clock                                                         |
| CLOCK_RATIO_AUX    | clock_ratio_array_t           | Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock                              |
| CLOCK_COMMON_RATIO | integer                       | Ratio of frequency of feedback VCO in MMCM that generates clocks for ports clk_p and clk_payload to the LHC clock |
| REGION_CONF        | region_conf_array_t           | Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.            |

| Name               | Туре                          | Meaning                                                                                              |                                              |
|--------------------|-------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|
| PAYLOAD_REV        | std_logic_vector(31 downto 0) | 32-bit version number for the algorithm                                                              |                                              |
| LHC_BUNCH_COUNT    | integer                       | Number of bunch crossings in an LHC orbit                                                            | Recall we used CMS timing infra              |
| LB_ADDR_WIDTH      | integer                       | Address width for data words in I/O buffers                                                          |                                              |
| CLOCK_RATIO        | integer                       | Ratio of frequency of I/O channel data clock to LHC cloc                                             | ĸ                                            |
| CLOCK_RATIO_AUX    | clock_ratio_array_t           | Ratio of frequency of clocks in clk_payload port (the aux                                            | liary clocks) to LHC clock                   |
| CLOCK_COMMON_RATIO | integer                       | Ratio of frequency of feedback VCO in MMCM that gene<br>ports clk_p and clk_payload to the LHC clock | erates clocks for                            |
| REGION_CONF        | region_conf_array_t           | Specifies what components (buffers, formatters, transceive                                           | rs) will be enabled in each datapath region. |

| Name                                      | Туре                | Meaning                                                                                               |                                          |  |
|-------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| PAYLOAD_REV std_logic_vector(31 downto 0) |                     | 32-bit version number for the algorithm                                                               |                                          |  |
| LHC_BUNCH_COUNT                           | integer             | Number of bunch crossings in an LHC orbit                                                             |                                          |  |
| LB_ADDR_WIDTH                             | integer             | Address width for data words in I/O buffers                                                           | Sets the main payload clock as           |  |
| CLOCK_RATIO                               | integer             | Ratio of frequency of I/O channel data clock to LHC clock                                             | a multiple of the master clock           |  |
| CLOCK_RATIO_AUX                           | clock_ratio_array_t | Ratio of frequency of clocks in clk_payload port (the auxiliary                                       | v clocks) to LHC clock                   |  |
| CLOCK_COMMON_RATIO                        | integer             | Ratio of frequency of feedback VCO in MMCM that generate ports clk_p and clk_payload to the LHC clock | es clocks for                            |  |
| REGION_CONF                               | region_conf_array_t | Specifies what components (buffers, formatters, transceivers) w                                       | vill be enabled in each datapath region. |  |

| Name               | Туре                          | Meaning                                                                                                           |  |  |
|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| PAYLOAD_REV        | std_logic_vector(31 downto 0) | 32-bit version number for the algorithm                                                                           |  |  |
| LHC_BUNCH_COUNT    | integer                       | Number of bunch crossings in an LHC orbit                                                                         |  |  |
| LB_ADDR_WIDTH      | integer                       | Address width for data words in I/O buffers                                                                       |  |  |
| CLOCK_RATIO        | integer                       | Ratio of frequency of I/O channel data clock to LHC clock Addition clocks are available                           |  |  |
| CLOCK_RATIO_AUX    | clock_ratio_array_t           | Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock                              |  |  |
| CLOCK_COMMON_RATIO | integer                       | Ratio of frequency of feedback VCO in MMCM that generates clocks for ports clk_p and clk_payload to the LHC clock |  |  |
| REGION_CONF        | region_conf_array_t           | Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.            |  |  |

| Name               | Туре                          | Meaning                                                                                                                          |          |
|--------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|
| PAYLOAD_REV        | std_logic_vector(31 downto 0) | 32-bit version number for the algorithm                                                                                          |          |
| LHC_BUNCH_COUNT    | integer                       | Number of bunch crossings in an LHC orbit                                                                                        |          |
| LB_ADDR_WIDTH      | integer                       | Address width for data words in I/O buffers                                                                                      |          |
| CLOCK_RATIO        | integer                       | Ratio of frequency of I/O channel data clock to LHC clock<br>instantiates a                                                      | h<br>III |
| CLOCK_RATIO_AUX    | clock_ratio_array_t           | Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock the highspeed                               | d        |
| CLOCK_COMMON_RATIO | integer                       | Ratio of frequency of feedback VCO in MMCM that generates clocks for ports clk_p and clk_payload to the LHC clock infrastructure | +<br>'e  |
| REGION_CONF        | region_conf_array_t           | Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region                            | n.       |

- Again, could start from blank file, but that would be tedious: EMP framework again includes a default version which can be copied
- cp src/emp-fwk/projects/examples/kcu105/firmware/hdl/kcu105\_decl\_full.vhd src/my-algo-repo/an-algo/firmware/hdl/emp\_project\_decl.vhd
  - And, again, we need to add it to our dep file, so
  - To the dep file, add the line src emp\_project\_decl.vhd

## CONGRATULATIONS

 Congratulations! You now have all the elements for a fully-functioning<sup>1</sup> firmware for a typical HEP Trigger/DAQ application



<sup>1</sup>We will clarify this statement later



## CONGRATULATIONS

- Congratulations! You now have all the elements for a fully-functioning<sup>1</sup> firmware for a typical HEP Trigger/DAQ application
- Now we just have to build it...
  - But IPBB does that for us too



<sup>1</sup>We will clarify this statement later



ipbb proj create vivado my\_algo my-algo-repo:an-algo -t top.dep cd proj/my\_algo

ipbb vivado project



ipbb proj create vivado my\_algo my-algo-repo:an-algo -t top.dep cd proj/my\_algo

ipbb vivado project

Creating the Vivado project

#### • We can then do ipbb vivado synth -j4 impl -j4

ipbb vivado package

- Which will run all necessary steps to build a bit-file and package it up for distribution
- Else we can open the project manually vivado my\_algo/my\_algo.xpr
  - Which is more useful when we are debugging our work!
  - So let's do that

• And hit "yes/ok" to everything

| <u>F</u> ile            | <u>E</u> dit F <u>l</u> ow <u>T</u> ools Rep <u>o</u> rts |    | <u>W</u> indow La <u>y</u> out <u>V</u> iew                |
|-------------------------|-----------------------------------------------------------|----|------------------------------------------------------------|
| - E,                    |                                                           | 10 | 🗢 Σ 🖄 🖉                                                    |
| Flow                    | Navigator                                                 |    | PROJECT MANAGER - to                                       |
| ę                       | IP Catalog                                                | ^  | Sources                                                    |
| V IP I                  | NTEGRATOR                                                 |    | Q   ¥   ♦   +   [                                          |
|                         | Create Block Design                                       |    | 🗸 🚍 Design Sources (6                                      |
|                         | Open Block Design                                         |    | > 🗁 Verilog (2)                                            |
|                         | Generate Block Design                                     | L  |                                                            |
| ✓ SIN                   |                                                           | L  | Properties                                                 |
|                         | Run Simulation                                            |    | Froperties                                                 |
| × KII<br>>              | Open Elaborated Design                                    |    | Se                                                         |
| <ul> <li>SYI</li> </ul> | NTHESIS                                                   |    |                                                            |
|                         | Run Synthesis                                             |    | Tcl Console Messa                                          |
| >                       | Open Synthesized Design                                   | L  | Q.   <u>∓</u>   ≑   <b>▼</b> ,   €                         |
| ✓ IMF                   | LEMENTATION                                               | L  | <ul> <li>Vivado Commands</li> <li>General Messa</li> </ul> |
|                         | Run Implementation                                        |    | (IP_Flow 19)                                               |
| >                       | Open Implemented Design                                   |    | [IP_Flow 19]                                               |
|                         |                                                           |    | (IP_Flow 19)                                               |
| ✓ PR                    | OGRAM AND DEBUG                                           |    | ✓ → Synthesis (991 wa                                      |
|                         | Generate Bitstream                                        |    | ✓ is syntn_1 (159 % I Common 1                             |
| >                       | Open Hardware Manager                                     | -  | <                                                          |

## PROGRAMMING

#### • Open the hardware



## PROGRAMMING



#### HARDWARE MANAGER - localhost/xilinx\_tcf/Digilent/210299A57BD7

1 There are no debug cores. Program device Refresh device

| Hardware                  | ?                                                | _ 🗆 🖒 ×                         |                      |
|---------------------------|--------------------------------------------------|---------------------------------|----------------------|
| Q   ≚   ♦   ∅             | ▶   ≫   <b>■</b>                                 | ۵                               |                      |
| Name<br>V I localhost (1) |                                                  | Status<br>Connected             |                      |
| ✓                         | ent/210299A57                                    | Open                            |                      |
| v @ xcku040_0 (1          | .)                                               | Programmed                      |                      |
| 👖 Sys                     | Hardware Dev                                     | ice Properties                  | Ctrl+E               |
| С                         | Program Devic<br>Verify Device<br>Refresh Device | e                               |                      |
|                           | Show Bus Plot                                    |                                 |                      |
| <                         | Add Configura<br>Boot from Con                   | tion Memory D<br>figuration Mer | evice<br>nory Device |
| Tcl Console ×             | Program BBR (<br>Clear BBR Key.                  | <еу<br>                         |                      |
| A INFO: [Labtoo]          | Program eFUS                                     | E Registers                     |                      |
| ⊖ open_hw_targer          | Export to Spre                                   | adsheet                         |                      |

## PROGRAMMING

A Program Device@cbc3wt2

Select a bitstream programming file and download it to your hardware device. You can optionally select a debug probes file that corresponds to the debug cores contained in the bitstream programming file.



Х

| Bitstre <u>a</u> m file: | firmware/proj/my_algo/my_algo/my_algo.runs/impl_1/top.bit |
|--------------------------|-----------------------------------------------------------|
| Debug probes file:       |                                                           |
| ✓ Enable end of st       | artup check                                               |
| ?                        | Program Cancel                                            |
|                          |                                                           |

• After reprogramming, on the commandline: pci\_reconnect



## REFERENCES

• <u>http://ipbus.web.cern.ch/ipbus/doc/user/html/firmware/ipbb-primer.html</u>

0