
GETTING STARTED WITH THE EMP
FRAMEWORK – PART 1
ANDY ROSE, IMPERIAL COLLEGE LONDON

RECALL “Infrastructure”

RECALL

“Payload”

THE BASIC IDEA

1. The emp-fwk repo contains top-level designs for various different FPGAs and

boards

2. Each of these designs instantiates an entity - named emp_payload - and connects

its input/output ports to the clocking infrastructure, control bus, and input/output

buffers.

3. Parameters that might have to be changed between different algorithms or

different FPGAs are specified as constants in a VHDL package emp_project_decl.

1 - PREREQUISITES

Set up python

sudo yum install python3-pip python3-devel

pip3 install --user pipenv

Install the IPBB tool

curl -L https://github.com/ipbus/ipbb/archive/v0.5.2.tar.gz | tar xvz

source ipbb-0.5.2/env.sh

Already installed:

Included here for completeness

1 - PREREQUISITES

ipbb init my-firmware

cd my-firmware

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/emp-

fwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy_ttc.git -b v2.1

ipbb add git https://github.com/ipbus/ipbus-firmware -b v1.5

Already installed:

Included here for completeness

1 - PREREQUISITES: THREE THINGS TO NOTE

ipbb init my-firmware

cd my-firmware

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/emp-

fwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy_ttc.git -b v2.1

ipbb add git https://github.com/ipbus/ipbus-firmware -b v1.5

EMP Framework currently stored on CERN Gitlab for our convenience:

How to manage wider distribution not currently thought through!

1 - PREREQUISITES: THREE THINGS TO NOTE

ipbb init my-firmware

cd my-firmware

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/emp-

fwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy_ttc.git -b v2.1

ipbb add git https://github.com/ipbus/ipbus-firmware -b v1.5

Using CMS legacy trigger and timing tools:

would need changing for a different experiment

1 - PREREQUISITES: THREE THINGS TO NOTE

ipbb init my-firmware

cd my-firmware

ipbb add git https://:@gitlab.cern.ch:8443/p2-xware/firmware/emp-

fwk.git -b feature/kcu105

ipbb add git https://gitlab.cern.ch/ttc/legacy_ttc.git -b v2.1

ipbb add git https://github.com/ipbus/ipbus-firmware -b v1.5

IPbus is on Github:

completely public and independent of EMP

1 - PREREQUISITES

• You now have the build tools and all the infrastructure firmware you need for

building a firmware for a typical HEP Trigger/DAQ application

• SIMPLES!

• Only thing missing is a payload

2 - PAYLOAD: ADD FROM AN EXISTING REPOSITORY

ipbb add svn [repo_url]

ipbb add git [repo_url]

But we are not going to do this:

What would be the fun in that…

2 - PAYLOAD: STARTING FROM SCRATCH

• Firmware project sources have no natural “structure”

• Traditionally, files & folders end up being a real mess

• IPBB imposes a fixed directory structure to keep everything organized

mkdir -p src/my-algo-repo/an-algo/firmware/{cfg,hdl}

2 - PAYLOAD: STARTING FROM SCRATCH

• You are now ready to create a payload

• Could start from blank file

• but that would be tedious

• EMP framework includes a “Null” algorithm which can be copied

• Don’t we spoil you :-)

cp src/emp-fwk/components/payload/firmware/hdl/emp_payload.vhd

src/my-algo-repo/an-algo/firmware/hdl/

2 - PAYLOAD: STARTING FROM SCRATCH

• IPBB uses Dependency (“dep”) files as a distributed way of organizing sources

• If you want to use your new payload, you need to add it to a dep file

• Open

• Add the line

• The IPBB “src” command defaults to the local “hdl” folder

src/my-algo-repo/an-algo/firmware/cfg/top.dep

src emp_payload.vhd

2 - PAYLOAD: STARTING FROM SCRATCH

• The “-c” option changes the search path

• Most of the time we want to constrain the payload to the payload area

• So add a design constraints file

• This is a “standard” element, so we have one in the Repo

• Add the line

src -c emp-fwk:components/payload ../ucf/emp_simple_payload.tcl

Repo Path excluding the

standardized

“firmware” section

Recall – default folder is “hdl”,

constraints stored in “ucf”

2 - PAYLOAD: STARTING FROM SCRATCH

• IPbus uses XML files to handle address space

• Add an address table so we can use IPbus later

• Add the line addrtab -c emp-fwk:components/payload emp_payload.xml

2 - PAYLOAD: STARTING FROM SCRATCH

• Finally, we need to target a specific board

• We have already made a large number of board configurations

• We are using the KCU105 dev board

• Add the line include -c emp-fwk:boards/kcu105

Board Dependency file command

HTG K800 include -c emp-fwk:boards/k800

MPUltra include -c emp-fwk:boards/mpultra

VCU118 include -c emp-fwk:boards/vcu118

Serenity KU115 SO1 include -c emp-fwk:boards/serenity/dc_ku115 dc_ku115_so1.dep

Serenity KU115 TM1/BM1 include -c emp-fwk:boards/serenity/dc_ku115 dc_ku115_am1.dep

Serenity KU15P v1 include -c emp-fwk:boards/serenity/dc_ku15p dc_ku15p_sm1_v1.dep

Serenity KU15P v2 include -c emp-fwk:boards/serenity/dc_ku15p dc_ku15p_sm1_v2.dep

3 – CONFIGURING THE INFRASTRUCTURE

• emp_project_decl is a VHDL package that defines several configurable

settings of the EMP framework, such as clock frequencies for receiving data

from the I/O channels, and which firmware components are instantiated in

each datapath region (e.g. input buffers, output buffers, input transceiver

control logic, output transceiver control logic)

3 – CONFIGURING THE INFRASTRUCTURE

Name Type Meaning

PAYLOAD_REV std_logic_vector(31 downto 0) 32-bit version number for the algorithm

LHC_BUNCH_COUNT integer Number of bunch crossings in an LHC orbit

LB_ADDR_WIDTH integer Address width for data words in I/O buffers

CLOCK_RATIO integer Ratio of frequency of I/O channel data clock to LHC clock

CLOCK_RATIO_AUX clock_ratio_array_t Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock

CLOCK_COMMON_RATIO integer
Ratio of frequency of feedback VCO in MMCM that generates clocks for

ports clk_p and clk_payload to the LHC clock

REGION_CONF region_conf_array_t Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.

3 – CONFIGURING THE INFRASTRUCTURE

Name Type Meaning

PAYLOAD_REV std_logic_vector(31 downto 0) 32-bit version number for the algorithm

LHC_BUNCH_COUNT integer Number of bunch crossings in an LHC orbit

LB_ADDR_WIDTH integer Address width for data words in I/O buffers

CLOCK_RATIO integer Ratio of frequency of I/O channel data clock to LHC clock

CLOCK_RATIO_AUX clock_ratio_array_t Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock

CLOCK_COMMON_RATIO integer
Ratio of frequency of feedback VCO in MMCM that generates clocks for

ports clk_p and clk_payload to the LHC clock

REGION_CONF region_conf_array_t Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.

Recall we used CMS timing infra

3 – CONFIGURING THE INFRASTRUCTURE

Name Type Meaning

PAYLOAD_REV std_logic_vector(31 downto 0) 32-bit version number for the algorithm

LHC_BUNCH_COUNT integer Number of bunch crossings in an LHC orbit

LB_ADDR_WIDTH integer Address width for data words in I/O buffers

CLOCK_RATIO integer Ratio of frequency of I/O channel data clock to LHC clock

CLOCK_RATIO_AUX clock_ratio_array_t Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock

CLOCK_COMMON_RATIO integer
Ratio of frequency of feedback VCO in MMCM that generates clocks for

ports clk_p and clk_payload to the LHC clock

REGION_CONF region_conf_array_t Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.

Sets the main payload clock as

a multiple of the master clock

3 – CONFIGURING THE INFRASTRUCTURE

Name Type Meaning

PAYLOAD_REV std_logic_vector(31 downto 0) 32-bit version number for the algorithm

LHC_BUNCH_COUNT integer Number of bunch crossings in an LHC orbit

LB_ADDR_WIDTH integer Address width for data words in I/O buffers

CLOCK_RATIO integer Ratio of frequency of I/O channel data clock to LHC clock

CLOCK_RATIO_AUX clock_ratio_array_t Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock

CLOCK_COMMON_RATIO integer
Ratio of frequency of feedback VCO in MMCM that generates clocks for

ports clk_p and clk_payload to the LHC clock

REGION_CONF region_conf_array_t Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.

Addition clocks are available

3 – CONFIGURING THE INFRASTRUCTURE

Name Type Meaning

PAYLOAD_REV std_logic_vector(31 downto 0) 32-bit version number for the algorithm

LHC_BUNCH_COUNT integer Number of bunch crossings in an LHC orbit

LB_ADDR_WIDTH integer Address width for data words in I/O buffers

CLOCK_RATIO integer Ratio of frequency of I/O channel data clock to LHC clock

CLOCK_RATIO_AUX clock_ratio_array_t Ratio of frequency of clocks in clk_payload port (the auxiliary clocks) to LHC clock

CLOCK_COMMON_RATIO integer
Ratio of frequency of feedback VCO in MMCM that generates clocks for

ports clk_p and clk_payload to the LHC clock

REGION_CONF region_conf_array_t Specifies what components (buffers, formatters, transceivers) will be enabled in each datapath region.

“Voodoo” which

instantiates all

the highspeed

links +

infrastructure

3 – CONFIGURING THE INFRASTRUCTURE

• Again, could start from blank file, but that would be tedious: EMP framework

again includes a default version which can be copied

• And, again, we need to add it to our dep file, so

• To the dep file, add the line

cp src/emp-fwk/projects/examples/kcu105/firmware/hdl/kcu105_decl_full.vhd

src/my-algo-repo/an-algo/firmware/hdl/emp_project_decl.vhd

src emp_project_decl.vhd

CONGRATULATIONS

• Congratulations! You now have all the elements for a fully-functioning1

firmware for a typical HEP Trigger/DAQ application

1We will clarify this statement later

CONGRATULATIONS

• Congratulations! You now have all the elements for a fully-functioning1

firmware for a typical HEP Trigger/DAQ application

• Now we just have to build it…

• But IPBB does that for us too

1We will clarify this statement later

BUILDING

ipbb proj create vivado my_algo my-algo-repo:an-algo -t top.dep

cd proj/my_algo

ipbb vivado project

BUILDING

ipbb proj create vivado my_algo my-algo-repo:an-algo -t top.dep

cd proj/my_algo

ipbb vivado project

We are creating a

Vivado project area

Project

name

The path to our repo

BUILDING

ipbb proj create vivado my_algo my-algo-repo:an-algo -t top.dep

cd proj/my_algo

ipbb vivado project

Creating the

Vivado project

BUILDING

• We can then do

• Which will run all necessary steps to build a bit-file and package it up for

distribution

• Else we can open the project manually

• Which is more useful when we are debugging our work!

• So let’s do that

ipbb vivado synth -j4 impl -j4

ipbb vivado package

vivado my_algo/my_algo.xpr

BUILDING

• And hit “yes/ok” to everything

PROGRAMMING

• Open the hardware

PROGRAMMING

PROGRAMMING

• After reprogramming, on the

commandline: pci_reconnect

REFERENCES

• http://ipbus.web.cern.ch/ipbus/doc/user/html/firmware/ipbb-primer.html

http://ipbus.web.cern.ch/ipbus/doc/user/html/firmware/ipbb-primer.html

